Radar Cross Section Measurements (8-12 GHz) of Magnetic and Dielectric Microwave Absorbing Thin Sheets

نویسندگان

  • Mirabel Cerqueira Rezende
  • Roselena Faez
  • Marcelo Alexandre Souza
  • Evandro Luı́s Nohara
چکیده

The aim of this work is to present radar cross section (RCS) measurements of a panel constituted of a flat aluminum plate with and without radar absorbing materials (RAM) type thin rubber sheets, in the range of 8 – 12 GHz. Two different loads were evaluated in the RAM formulation: 1. Magnetic (ferrites MnZn, NiZn and MgZn based), and 2. Dielectric (conducting polymers polyaniline based). The measurements were carried out in the anechoic chamber at Centro Técnico Aeroespacial (CTA)-Ministério da Defesa facilities of São José dos Campos-SP, Brazil, and the RAM manufacturing in the Divisão de Materiais/IAE/CTA. The RCS measurements, in square meters, were estimated using theoretical values from reflectors with controlled dimensions. The RCS results showed a RCS reduction of 55-95% and of 40-80%, when the magnetic and the dielectric panels were impinged at normal incidence, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Method for the Preparation of Fe3O4/MWCNT Nanohybrid as Radar Absorbing Material (RAM)

We have successfully prepared Fe3O4/MWCNT nanohybrid with a very simple and economical method. Multi-Walled Carbon NanoTubes (MWCNT) encapsulated with Fe3O4 nanoparticles were synthesized via pyrolyzing of ferrocene. The sample was characterized with XRD, TEM and Vibrating Sample Magnetometer (VSM). Also, Permeability (µ) and Permittivity (ε) were...

متن کامل

Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers

The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar ba...

متن کامل

Investigation on magnetic and microwave behavior of magnetite nanoparticles coated carbon fibers composite

Radar absorbing materials, i.e. magnetite (Fe3O4) coated carbon fibers (MCCFs) were fabricated by electro-deposition technique. Black-colored single spinel phase Fe3O4 nanoparticles was easily synthesized by hydrothermal method using reduction of a Fe (III) - Triethanolamine complex in an aqueous alkaline solution at 60-80 ◦C. Uniform and compact Fe3O4 films were fabricated on nitric acid treat...

متن کامل

Improving Radar Absorbing Capability of Polystyrene Nanocomposites: Preparation and Investigation of Microwave Absorbing Properties

Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene ...

متن کامل

Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties

This paper presents the processing and characterization of electromagnetic radiation absorbing paints and sheets based on magnetic and dielectric materials dispersed in polymeric matrices. Two different paint formulations containing carbonyl iron and/or polyaniline, using polyurethane as matrix, were prepared. Silicone sheets were also produced with polyaniline conducting polymer as filler. Mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003